Model choice: A minimum posterior predictive loss approach

نویسندگان

  • Sujit Kumar Ghosh
  • Alan E. Gelfand
چکیده

Model choice is a fundamental and much discussed activity in the analysis of datasets. Nonnested hierarchical models introducing random effects may not be handled by classical methods. Bayesian approaches using predictive distributions can be used though the formal solution, which includes Bayes factors as a special case, can be criticised. We propose a predictive criterion where the goal is good prediction of a replicate of the observed data but tempered by fidelity to the observed values. We obtain this criterion by minimising posterior loss for a given model and then, for models under consideration, selecting the one which minimises this criterion. For a broad range of losses, the criterion emerges as a form partitioned into a goodness-of-fit term and a penalty term. We illustrate its performance with an application to a large dataset involving residential property transactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

A New Nonlinear Multi-objective Redundancy Allocation Model with the Choice of Redundancy Strategy Solved by the Compromise Programming Approach

One of the primary concerns in any system design problem is to prepare a highly reliable system with minimum cost. One way to increase the reliability of systems is to use redundancy in different forms such as active or standby. In this paper, a new nonlinear multi- objective integer programming model with the choice of redundancy strategy and component type is developed where standby strategy ...

متن کامل

Predictive minimum Bayes risk classification for robust speech recognition

This paper presents a new Bayes classification rule towards minimizing the predictive Bayes risk for robust speech recognition. Conventionally, the plug-in maximum a posteriori (MAP) classification is constructed by adopting nonparametric loss function and deterministic model parameters. Speech recognition performance is limited due to the environmental mismatch and the ill-posed model. Concern...

متن کامل

DESIGN OF MINIMUM SEEPAGE LOSS IRRIGATION CANAL SECTIONS USING PROBABILISTIC SEARCH

To ensure efficient performance of irrigation canals, the losses from the canals need to be minimized. In this paper a modified formulation is presented to solve the optimization model for the design of different canal geometries for minimum seepage loss, in meta-heuristic environment. The complex non-linear and non-convex optimization model for canal design is solved using a probabilistic sear...

متن کامل

Optimal predictive model selection

Often the goal of model selection is to choose a model for future prediction, and it is natural to measure the accuracy of a future prediction by squared error loss. Under the Bayesian approach, it is commonly perceived that the optimal predictive model is the model with highest posterior probability, but this is not necessarily the case. In this paper we show that, for selection among normal l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999